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0, Non-Technical Summary

In this paper , a single device shock model is studied . The

mode l we consider consists of a sing le device which experiences

shocks which come from the outside environment . An examp le is a

sensitive electrical component which occasionally experiences a

large electrical surge due to a malfunction in the electrical system.

Each of these shocks can render the device inoperable , and will at

least make i t  more likely to fail when the next shock arrives .

It is often important to classify the distribution of the

time to failure for some item. What we attempt to do in thi s paper

is to examine the one-device shock model and to consider the condi-

tions on the shock process and on the ability of the device to with-

stand shocks which allow us to do such classifying . We try to find

conditions on the process which allow us to place the time-to- failure

distribution of the model into one of the common reliability theory

classifications .

i
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1. Introduction and Summary

In this paper, we shall study a simple one-device shock model and

attempt to establish various qualitative features of its time- to- failure

distribution .

Let L be the time of failure of the device and let i~(t) = P(L >

and H(t) = I - ~i(t). We suppose that the device is subject to a series

• of shocks whose arrival process is a renewal process with interarrival

distribution F. We further suppose that the device survives the first

k shocks with probability 
~~ 

We assume that 1 = P0 > P 1 > p2 >
1k l~ tk~Then H(t) = 

~~

‘ P~[F’ ‘(t )  - F’ ÷ 1( t ) ) ] , where F’ ‘ is the kth
k=0

convolution of F.

The general approach of this paper is to make various assumptions

about the t
~k~ 

sequence and the sequence of functions

or f, the density of F, and to then try to classify H(t), the time to

failure distribution . The classifications common in reliability theory

include Increasing Failure Rate (IFR) distributions, Increasing Failure

Rate on the Average (IFRA) distributions and distributions with Polya-

Frequency of order 2 (PF2) 
densities .

The general setup of this paper largely follows that of (1] and

[3]. In [3], the shock renewal process was taken to be Poisson, that

is, F was assumed to be exponential~ and in [1], the shock process was

assumed to be non-homogeneous Poisson. In addition, we will app ly some

of our results to the stochastic wear process introduced by Morey in

[6]. A stochastic wear process is an increasing, non-negative stochastic

process, where F(t,x) = P(Z~ 
< x) is Totally Positive of order 2 (see

Section 3). We will now discuss some of the results of [3) and of our

2
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results. If the reader is unfamiliar with some of the terms, he can

refer to Sections 2 and 3.

Below, we note the major results of [3], which can be extended,

in some natura l fashion, to the case of a more general renewal process .

Many of the other results, which deal with distribution classifications

such as New Better than Used (NBU) and New Better than U6ed in Expectation

(NBUE), seem to be valid only for Poisson renewal processes.

Suppose that rL( t) = 

~ 
~~~ (?~t)

k/kt 1’k 
where I = P0 

> P
1 > P2 >

then

i) If ek = 
~k’~k I  

is decreasing in k = 1, 2, ..., i.e., if

r t
~ k’ 

k > 0) is a PF
2 

sequence, then H is IFR.

if) If el/k is decreasing in k = 1, 2, ..., then H is IFRA .

iii) If 
~k 

= 
~k..1 

- 

~k 
is PF2, then the density of H is PF2.

We will extend each of the above results to a more general renewal

process .

For i), we assume that F~~~(t) - F +1)
(t) is TP3, for ii), we

assume that f(n)(~ ) is TP2 and in iii), we assume that f~~~(t) is

TP
3

For i) and ii), no further assumptions are made on the t
~ k

1

• sequence, but for iii), we assume that 
~k 

= 
~k 

- 

~k..1 
is decreasing .

• 
In 1), ii) and iii), we assume that 

~~~
, (F~

’
~~(t) - F~~~~~(t))~~

n=0

is respectively log concave for ~ E [0,1], IFRA f or ~ € [0,1] and

has a log concave density for ~ € [0,1].

In each case we get the same result as in [3] and we also show

that the assumptions on the quantity , 
n~O 

(F~~~(t) - F ÷I)
(~)~

n 
are

3
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necessary . We also find a large class of densities which satisfy the

various assumptions .

For the stochastic wear process, we study the hitting time of

to some random barrier X. We find necessary conditions on the

process Z~ and on X so that the distribution of Tx, where

Tx = inf (t > o Iz~ > X) , is either IFR, IFRA or has a PF2 density
zt

Suppose Z~ is a stochastic wear process with E[~ ] log

concave in t for ~ € [0,1]. Then if F(t,x) = P(Z~ 
< x) is TP

3

and X has a PF
2 

density, or if f(t,x), the density of F(t,x), is

TP
3 

and right continuous in t and X has an IFR distribution , we

show that T
x 

has an IFR distribution .

Al so, if Z~ is strictly increasing and f(t,x) is TP
3 

and

right continuous and X has a PF2, decreasing density, we show that

has a PF
2 density. In all of the above cases, we show the necessity

r z~of the condition that E[~ ] be log concave.
zt

In addition, if E[~ I is IFRA for ~ € {o,i], if F(t,x) is

• TP2 and X has a PF2 density , we show that T
x 

is IFRA.

2. Distribution Classes in Reliability Theory

In this section , we define some of the classes of distributions

~1~ used in reliability theory . Throughout, F and H will be distributions

÷ . .
4 on ~ with F(0) = 0. f and h will be respectively the dens ity

of F and H (when the distributions are absolutely continuous).

• 
;

_ 

and f( are, respectively , 1-F and 1-H. ~~~ is the nth fold con- —

volut ion of F and f(~~ the nth fold convolution of f.

will be a decreasing sequence of non-negative numbers with Po

_ _ _  _ _ _ _ _ _
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When appropriate , we will have

~(t) = 
n=0 

(F(n)(~ ) - F~~~~~~(t)) P

F is said to be IFR if ~(x÷t)/~’(t) is decreasing* (when defined)

in t >0 for all x >0.

If E(t)
l
~
t 

is decreasi ng in t >0, F is said to be IFRA .

It is well known that F IFR imp lies that F is IFRA .

F is discrete IFRA if the support of F is the non-negative

integers and ~(n)
Vn is decreasing in n (n an integer).

F is discrete IFR if the support of F is the non-negative

integers and (~‘(n)) is PF2 (see next section) on the integers. A

sequence (a
n), n > 0 is discrete PF2 if and only if a

1/a is

decreasing in n.

If F is absolutely continuous , F IFR is equivalent to

• r(t) = f(t)/E(t) increasing in t >0 (P(t) >0) for some version of

• f,

3. Summary of Total Positivity
•

Consider any function K X x Y —*]R, where X, Y~~ IR . Define

the function K
[~~(~~,~ ) = det~K(x~, ~~~) I ~~~~1 

on the set

j=1,.. .,P
i~P(X) x~~P(Y) where L~P(X) is the set of all P-tuples (x 1, ... ,X~)

• for which x~ < X~÷1, i = 1, . .. , P-I and X~ € X. Define ~P(Y)

similarly.
*Throughout, increasing (decreasing) means non-decreasing (non- increasing).

U 5
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Definition. K x ,y) is (strictly) totally positive of order r TP
r

(STP~) 
if K

1~~1
(~~,~ ) >0 ~>o), PK r, ~~~~~ E~~P(X) x L~P(Y). If

K(x,y) is TPr (STP r) of all orders, it is said to be TP ( s ’r P ) .

Definition . If K(x,y) is TP
r 

and admits a representation K(x,y)

= ~(y- x), we say tha t 0 is a Polya Frequency Function of order r

-

• 

(PF).

A function is PF
2 if and on ly if it is log concave. F is IFR

if and only if ~~
‘ is PF2. If F has a density f which is PF2, then

F is IFR.

We now note some other characterizations of PF
2 functions and

IPRA distributions. From [2), F is IFRA if and only if for each

~ > 0, ~ ( t) - e
_Xt 

has at most one change of sign, and if one change

of sign actually occur s, it occurs from ÷ to - .

From [3], f > 0 is PF~ on ]R~ if and only if for all a, e,
f(t) - ae

_ et 
changes sign at most twice , and if two sign changes occur,

- . they are in the order - + - . That is, f(t) - ae et goes from

negative to positive to negative .

Examp les:

K(x,y) eXY is STP

(1)

K(x,y) 
~~~ 

is TP

6
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We now introduce the notion of variation diminishing. Let F(t)

be defined on I where I is an ordered set of the real line. For

our purposes, I will always be ]R
+.

Let

S (F) = sup S [F( t1), ... , F( t
m
)]  

~

where the sup is taken over t
1 < t2 < < t , t . E I, m arbitrary

and S [x 1, ..., X~] is the number of sign changes of the sequence,

zeros being ignored .

Let K(x,y) defined on X x Y be Borel measurable . Assume

tha t  f K ( x ,y) du (y) exists for every x in X. u is taken to be

a s igma-f in i te  regula r measure on Y . Let f be bounded and Borel

mea surab le on Y and let

g( x) = f K(x ,y) f ( y )  u( dy) .

The p roofs  of the folLow ing three theorem s can be found in [i #}.

Theo rem 1, If K is TP and the above condit ions are f u l f i l l e d-
~~~~ r ‘

t hen S ( g )  < S ( f )  provided that  S ( f )  < r -l .

Also , if f is piecewi se cont inuous , t~ien f and g exhib i t

the same seque nce of signs when their  respective arguments t raverse

the domai n of d e fi n i t i on f r om le f t  to r i ght .

7
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Theorem 2. If K(x,y) is TP
r 

on (O ,ool x (0 ,co] and integrable over

y with respect to a sigma-finite measure ~x on [O ,oo) , then the

iterates, L(n,y) are TPr 
for n = 1, 2, 3, ..., y > 0, wher e

L(l,y) = K(0,y)

L(n,y) = f L(n- l, ~ ) K(~ ,y) d~(~) , n = 2,3,~,

Theorem 3. If K(~~,Y) is TPr on x ~ Y and L (r,n) is TP
~ 

on Y x Z,
where X, Y and Z are subsets of the real line and a is a sigma

f i n i te  measure on fl , then

M(~~,n) = I K(~~,T) L(r ,n) da( ’r) , € X, n € Z
Y

is TP • assuming the integrals converge absolutely.
min (in,r)

Lemma 1. If f is a PF2 
density concentrated on [O ,oo] , and if F

is the ass oci a ted d is t r ib u t ion and F(n)  the nth  fold convolution of

F, then F~~~ (t )  — F~~~
1
~~( t )  is TP2. f~~~ ( t )  is also TP2.

Proof. A pply Theorem 2 wi th  K(x ,y) = f ( y- x) , d~ (~~) = d~ to see that

f~~
) (t )  is TP2.

A pp ly Theorem 3 with K(~~, ’r) = f( t_~ ) ,  L ( T ,m) = and

dcx( T) = dt to see that  I - F( t) is PF2.

Final ly , note that  the product of two TP2 funct ions  is TP2 and

then apply Theorem 3 with K(~~, T) = ( 1  - F(~~- T ) ) l ~ >T and L ( T ,n) = f t: fl) ( T)

and da( t) = d r .

H
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4. The Shock Renewal Process

Let us more formally consider the shock renewal process. In

continuous time, let be the number of shocks which have arrived

by time t, and if we assume that shocks only come at integer times,

let N he the number of shocks which have arrived by time n.n
• Then for ~ E (0,1),

Nt
E[~ I = 

~~
, 

~~ P(Nt = n)
n=0

= 
n=0 

~
n
~F (n ) (~~) - F~~~

1
~(t))

= 1 + 
n=l 

F~~~(t) ~
n

No-
~~~~ E[~ ] = 1 , and

u r n  E[~~
t
] 1 ÷ lirn ~ F~~~(t) ~~

t - ) o o  t —* oo ti~d

1 °° (b y bounded
= I + ~ u r n  F~~~(t) 

~~ convergence)
n~ l t — ~~

= L ÷ .~~-~~~~ 
~~~

n=1

For ~ = 0, let E[~~
t

J = P(N
~ 

0). Note that E[~~
t] is continuous

in ~, . Our major assumption through the remainder of the paper is

Nt Nn
that E[~ I (E[~ ]) is e i ther log concave (PF2) 

or IFRA (discrete

IFRA).

9 
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We list some examples below:

1) If F ( t )  = 1 — e
_ ?\t

, then

N t 
= 

(~~t)
fl

e~~
t 
~n = e~~ t ( l-~ )

(2) Let F(t) be a gamma distribution with rate 1 and parane ter 2.

Let f be the density of F. Let p2

E[~~
t
] = + •

~:~
l 

n=l 
F(n)(~ ) 

2n

Taking Laplace t r ans forms  wi th

N
g ( s )  = f e

_ S t  
E[~ ~) dt

0

g(s) = ÷ 
P
:
~ l 

~ (~~ ~~~ 
n~1 

f(n)(~ ) ~
2n 

dt

= -
~~ ÷ 

P
2
-1 

~ n~u 
( 1 e~~

t 
f(t) p

2 
d~)

n

= 
1 

+ 
P~-l -~~ (1÷5)

2

p 
~~ 

p
2

(li-s)

11 2 _______= — + (p -1) 
(1+5)

2 
- 

2

I I
l i i 2 

_ _ _ _  ~~~~~ 11= 

~~ L + ~ -1) V l÷ s)÷p  + ( l ) p  J ~
-~~~ Reinver t ing,



- - -

E[~~
t
] = 

1 
[(l÷ p) e~~ ~~~ + (~~-l) e~~ 

1~~ )t
1

A s imple ca lcula t ion  w i l l  show that  this  f u n c t i o n  is log concave .

-
• (3) Consider a renewa l process on the non-negative integers

wi th interval distr ibution F, where F(n) = 1 - pfl
, o < p 1  1, q = i-p.

Such a process is Markovian . It can be shown that N = ~ S where
fl 

k=o k
the (S

k) are independent , identically distribut ed with P(S
k = 0) =

P(S
k = 1) = p. Therefore,

n 
k n-k k nEI~~ ] = p q 

~k=O

n n
= q  (1+ p~/q)

NnClearly, E[~ ] is a PF
2 function on the non-negative integers .

( 2 k) Let G(n) = F~
2
~(n), where F is as in (3). If N~ is

the discrete renewal process associated wi th C, then

[n~2]
7 Sk ,• k=O

where (S
kJ is as in (5). Letting ~ = ~

2 
we have

11
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= 
~~k 

(~~ )
2k 

q
(n~2k)

~ 
[n/2j-l n 2k+l n-(2k+l)

~ 
(~~ ÷~ ) ( pP) q

k~0

— 
(~~~~)

n 
÷ (~~~~~

-
~~~)~~~ . ~, +2 ‘ p

— This sequence is PF2.

Section 7 contains a discussion on how to construct  d is t r ibut ions
N

for which E[~ 
~~
] is log conc ave .

Theorem i. Let F have a density f which is PF2. Then H is IFRA
Nt l’tfor all discrete IFRA sequences 

~~k
3 if and only if E[~ ] ‘ is

decreasing in t for all ~ € [0,1].

Also, F~~~(t) - F~
’
~~~(t) TP2 can rep lace the condition that

f be PF2 .

Theorem 5. Let F be a distribution function whose support is the

posi t ive in tegers  and suppose tha t  f ( n )  = F(n) - F(n_ l) is PF2.

Then H(n) is discrete IFRA for all discrete IFRA sequences

if and on ly if E[~ 
fl

] ~“
n 

is decreasing in n for all 
~ € [0,1].

Theorem 6. Suppose that F~
”
~(t) - F~~~~~(t) is TP3. 

Nt 

H(t)

is IFR for all PF
2 sequences ~~k

1 if and only if E[~ 3 is log

concave (PF2) for all ~ ~ [0,1].

12
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Theorem 7. Let F be a distribution function whose support is the

positive integers and suppose tha t F( k ) (n )  - F~~~~~ ( n )  is TP
3
.

Then H(n )  is discrete IFR f o r  a l l  PF2 sequences 
~~~ 

if  and oniy

if Ek~~1 is PF
2 for all ~ € [0,1].

Theorem 8. Let 
~k 

= 
~k 

- 

~k- 1’ k > 1. Suppose t hat f~’~~( t )  i s TP3.
Then, H(t) has a PF

2 density for all PF2, decreasing sequences

if and only if g(t,~ ) = 
n~ l 

~~~~t)  ~n 
is log concave fo r  a ll

~€ [0,1].

Before we prove the above theorems, we must first prove a couple

of technical lemmas. Lemma 2 is needed for the proofs of Theorems 6

and 7 and Lemma 3 for  Theorem 8.

First, we introduce the function,

• Nt Ntg(~ ,t1, t2) = E[~ 
2]/E[~ 

]~] for ~ (0,1), t2 > t1 > 0

Let k
~ = in f (n  > 0 : P(N t = n) > 0). We define

1

g(O , t 1, t~~) = lim g(~~, t 1, t~~)

= P(N = k )/P(N = k )t2 t I t i t l

Lemma 2. If F~
°)(t) - F~~~~~( t )  = P(N

~ = n) is TP2, then for any

> t
1 >0 for which fi(t1) >0, there exists a ~ € [0,1) for

which g(~ , t1, t2) =

I
4,,.- -

1)

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof. g(1, t 1, t~) = 1 and g is continuous in ~ € [0,1]. So,

if we can prove the existence of a ~ € [0,1] for which

0 < g( ~~, t 1, t~) K ~i( t2)/~( t1) < I = g( 1, t1, t2) ,

then by the continui ty of g, the lemma is proved .

Now, g(0, t1, t~~) = P(N~ 
= k

~ 
)/P(N

~ 
k
~ ), so it suffices

2 1 1 1
to show that g(O, t 1, t

2) < ñ (t2)/ñ(t1), that is,

P(N
~ 

= k
~~) ~

(t 1) < ~~( t ~~) P(Nt = k
~~) ,

P (N  = k ) f-i( t 1) = ~~ P(N = k ) P(N = 2) P
t2 

t
I £ > k  ~2 ~l ~l £

2 >k
~ 

P(N = k
~~
) P(N

~ 
= 2) P~~

= P(N = k ) ft(t2) .ti tI

— The inequality follows as P(N
~ 

= k) is TI’2.

The following lemma is proven in greater generality than needed

for this section . The more general form is needed for Section 8. The
4

reader can skip this proof for the moment and just refer to the corollary .

We will let ~ be some a-finite measure on JR+, g some non-

negative, decreasing function on and f(t,x) some function on

IR~ xIR 4 which is TP2 on ]R~ x A where A is the support of ~~, and

which is right continuous in x for each t .

U4
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Lemma 3. For f, g, ~ as above, if I f(t,x) ~i(dx) is decreasing

in t , then for t
1 
< t2,

~ f(t~,x) 
~~ 

~i(dx) 

~ 

f(t2,x) g(x) ~(d x)

~ 0 
~ 

f(t x) ~~ ~i(dx) f f(t~,x) g(x) ~(dx)

r1 f(t2,x) ~~ ~(dx)

< lim
— 

~ t 1 
j  f(t1,x) ~~ ~(dx)

where we assume that all denominations are non- zero and all integrals

finite .

Proof. Let

V 
~~, 

U( x, y) f( t 2, x) f( t1, y) - f( t2,y) f( t1, x)

• 1 
We will first prove the right-hand side inequality . As

1 im I i t , x) ~X 
~~ dx) = f f( t , x) ~~( 

dx)
-~~~~~ ~~t l o  0

we mus t  show tha t

j
’ f(  t2,x) g(x) ~(dx) I f( t1,x) ~(dx)0 0

f f(t2,x) ~(dx) J f(t 1,x) g(x) ~(dx)0 

0l
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Now,

0 
~ f f  U(x ,y) (g(x) - g( y) ) ~,i ( dx )  V( dy)

x > y O

= f I U(x,y) g(x) 4(dx) V (dy)
x > y > 0

÷ I I U(x,y) g(x) ~t(dx) V (dy)
• y > x � O

Substituting for U(x,y) and seperating each of the above integrals

gives us the desired inequa lity.

Now, we consider the left-hand side of the inequality. Let

k( t )  = inf(x >0 ! !  f~t,x) ~(ds) >03

If ~i( ( k( t 1) )) > 0 , the inequal i ty fol lows immediately f rom the f act

that f ( t ,x) is TP2 and g(x )  > 0 . Suppose that  p,( (k( t 1) ) )  = 0,

I f(t~,x) 
~x 

~(dx) 
~~( t

1) 

f(t2,x) ~
xk (t1) ~(dx)

lim Llm
0 

~ f( t 1, x) ~~ 4(dx)  f f( t 1, x) ~x_ k(  t l)  
~(d x)

0 k ( t 1)

k( t  ) ÷ €
f f( t2,x) ~

x-k( t 1) 4(dx)
kit 1)I lim u r n  —

— 

0 ~ 0 ~ 
t

1 ) ÷ €  
f( t1,x) ~

x_k ( t 1) 
~(dx)k ( t 1)

f(t2, k(t1) + e)
.
~~~ 

~l~m
0 f(t1, k(t1) ÷ ~~)

_  _  -.~~~~~~~~~~~~~•--•.,- - —~~~~~~• ,---- -~~~~~~-- - --“-
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As f is TP2,

I f(t2,x) g(x) ~(dx)f(  t2, k( t
1)÷ €)  k( t

1
) - ~-€

f ( t 1, k ( t 1)i~~) -~~~

I f(t1,x) g(x) ~i(dx)k ( t 1)+€

Letting € ~~O on both sides, and noting the above string of inequalities
shows that

f f( t2, x) ~~ 
~( J f( t~ ,x) g( x) ~(d x)

~ 4 O~~ f ( t 1, x) ~~X 

~(dx) .1 f ( t 1, x) g(x)  ~i(d x)

as required .

We will now prove the needed corollary~ Let 
~k 

be a decreasing
non-negative sequence . Let f(t) be the density of some non-negative
random variable .

Corol
~~!.~~ If ~~~~~~ is TI’2, then for any t

1 
I t~~, 

~~k
3 decreasing,

• there exists a E. [0,1] such that

h(t
2) k~ l 

f(k)(t) 
~k kJ  

f(k)(t) ~
k

- 

~° 
k k

~ ~~~ ~ 
~~ (t1) -~~~k=l k 

k -i

17
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Proof. We can apply Lemma 3 with  g(k)  = 
~k’ 

f (  t ,n) = f (n) (~~) and

counting measure on the positive integers. We can extend g to

and f to R+ xiR~ in an appropriate manner S By Lemma 3,

°° 1k’ k ~° “k’ k): f’ “ ( t
2) 

~ h ‘ ~~ f’  1( t ~~) ~
. k=l ( t

2 . k=lu r n  I < lim

~ 

4 0 

k~ l 
f(k)(t ) ~

k 
— h (t1) 

— 

~ ~ 
k=l 

f(k)(t) ~
k

- - 

The corollary follows by the continuity of 
~ 

f(k)(t) ~k in ~~.

Proof of Theorem Li. .

ñ(t) = 

n=0 
[F~~~(~ ) - F(n÷1)(~ )] p

N
- E[~ 

~~
1 = ~~~ [F(n)(~~) - F~~~~~(t)] (P - ~n)

n=O

As P1’~ decreases by assumption, the sign of p - ~ ° changes

sign at most once, and if so, from + to - . As f is PF2,
- F~~~

1
~(t) is TP2 by Lemma 1. So , by Theorem 1, ~(( t)  - E[~~

t
)

has at most one sign change and if i t  does change sign, it is from
4 

+ to - .

We suppose tha t H(t) = 1 - ~~( t )  i s  not IFRA . It then follows

from [2 ], p. 89, that there exists a 0 1 1 1 and a t
0 

for

which fl(t) crosses from below at t = t0. Now

-
~~~~~ 

N
~u r n  E[~ 0I = P(N = 0) K H(t0)~i~~ o to

18
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N t N
A s E[~ is continuous in ~ and E[1 ~ ] = I > i~(t), it follows

Nt -that there exists a € [0,11 for which E[~~1 
0] = H(t0) =

NtA s E[~~1 I 
/ is decreasing (1 — E[~~1 I is IFRA) , E[~~1 )

has a downcrossing with respect to at t = t
0.

Therefore, fl(t) crosses E(~~1 I from below at t = t0. So
Ntthe sign of c i(t )  - E[~~1 ] goes from - to +. This is a contradiction,

so ~ji t) must be IFRA .

I -  I =~ We are given then H( t) is IFRA for all sequences 
~
I’k1 where

= .
~~~ 

~ , > • . .
, r

i/k 
decreasing . Let = ~

k 
0 < ~ 1

,

~ ( t )  = 

n=O 
(F~~

)(t) - F~~~
1
~(t)) ~

n 
= E[~~

t
]

Nt Nt l/tSo 1 - E[~ I is IFRA (E[~ ] decreasing) as H is IFRA .

~
ti 19
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Proof of Theorem 5.

f(n) = F(n+l) - F(n) is PF
2 by assumption. By Lemma I,

(k)f (n) is TP2,

~
~(n) = 

~~ 
P(N

n = k) I’k = ~ f’ ‘(n) 
~k ‘k=0 k=0

N “k’ kt ft(n) _ E[~~ °] =  
~ 

ft) (n) (P
k

_
~~~

).
k=0

- ~k changes sign at most once and in the order + to - . There-

for e, by Theorem 1, ñ(n) - E[~~
t
~] changes sign at most once and in

the order + to - .

Suppose i~(n) is not discrete IFRA. Then we can find a

- n
€ [0,1) and an n

0 
> 0 for which H(n

0) 
< ~~° and H(n

0÷l) 
>

We can, as in the previous proof, assert that there exists a € [0,11
n N

for which ~~~ >E[~~1
nO] >~i(n0).

As E[~~nOI < ~~
0 and E[~~

f]1/n1 
is decreasing, E[~~~

0+h ] < 
n~+l

Nn -E[~~1 I goes below H(n) at n = n0+l. That is, the sign of

Ü(n) - E[~~1
0
] changes from + to - as n goes from n to n

0-i-I.

Let P = and proceed as in Theorem 5.

Proof of Theorem 6.

ft(t) = 

n=O 
[F(n)(~ ) - F 1

~(t)] P~

~~(t )  - aE[~~
t] 

n~~ 

[F~~
)(t) - F~~~~~(t)) (P - a~~)

As t
~ n

1 is PF2, P~~1/P~ is decreasing, so the sign of P - a~
’
~

— changes at most twice and in the order - ~- - . As F(nl)(t) - F
(1
~
+1)

(t)

20
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is TP3, we can assert by Theorem 1 that the sign of ~(t) - aE[~~
t)

changes sign at most twice and in the order - + - .

— 
We know that H is IFR if and only if for any a and ~~, the

number of sign changes of fi(t) - a~
t 

number at most two, and if there

are two, they are in the order - ÷ - .

Let us suppose the contrary . That is, assume that there exists

an a, ~ for which the sign of ci( t) - a~
t 

goes from - to + to - .

Refer to the below diagram. By Lemma 2, we can find a b, 
~~ 

with
Nt1 t1 Nt t2 NtbE [~~1 ) = a~ = f i( t

1
) ,  bE1~~1 

2j = a~ = i~(t2) .  As bE[~ I is
M

t tlog concave by assumption, we have that for t
1 
I t I t2, bE[~~1 I > a~

It is clear that there exists t t t t I t I t I t I t fora’ b’ c’ a I b 2 c
- 

Nt - 
Nt - N

which H(ta) 
- bE[~~1 I > 0, H(tb) 

I bE[~~1 
b 1, and H (t) > bE[~~1

tdI.

Th is, however, is in contradiction to the initial result about the
Ntsign change pattern of H(t) - aE[~ ] for all a,~~. So H is IFR .

=‘
~~ Again, let 

~n 
= and the converse is immediate.

t a t l tb t2 t

21
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Proof of Theorem 7.

A review of Lemma 2 shows that it is still applicable for

discrete time,

Co 00

fI( n) = 

k O  
[F~~~(n) - F~

’
~~

1
~(n)] I’k = 

k 
f(k)() I’k

N Co

- aE[~ 
n j = ~ f (k) (~~) 

~~k 
- a~~)

k=O

As i’k 
- a~

1
~ changes sign at most twice, and in the order - + -,

and as f( )
(~~ ) is Ti’3, then by Theorem I, fl(n) - aE[~ n1 changes

sign at most twice and in the order - + - .

We suppose that 11(n) is not PF2, or equivalently that there

exists constants a ’,~~~, n1~ 
n2, n3, where n1 

In
2 In 3 

are integers

- n - ~~~~ n~for  which H(n 1) > a ’, ~~ , H(n~) < a ’ ~~ , H(n
3
) > a ’

Making use of the fact that any two exponential curves cross

at most once, we can find a new pair of constants, a and 
~~~
, for which

- n1 - - n
1-1( n 1) = a~0 , H(n2) I a~~ , H(n

3
) = a~0

3
~

As in the previous theorem , using Lemma 2, we find a b, 
~~~
,

with bE1~~1
nli = Ü(n1), bE [~~1n3I = i~( n

3
) .  We proceed as in the pre-

vious theorem to get a contradiction . So i1(n) is PF2.

H =~~ Let

~~~~~ i 
_ _ _ _ _ _ _ _ _ _ _ _ _

- 
• Proof of Theorem 8.

Let h be the density of H,

22
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h( t) = 

n~I 
f( n) 

~ 
t) p ,

h(t) - ag(t,~ ) = 

n~ l 
~~~~~( t )  (P  - a~~) -

— We now have the same setup as in Theorem 6. We now may use the

Corollary to Lemma 3 in the identical way that we used Lemma 2 in

the proof of Theorem 6.

Let p
k~~~~~

& ~k

• N
7. Densities for Which E(~ 

~ ] is log Concave

As was mentioned earlier, the question of finding distributions

with the properties required in Theorems 1~ through 8 is formidable.
NtBel ow, we identify a class of densities for which E[~ 3 is log

concave.

- 

• 
Definition. Let be the set of functions Q on [0,00) with the

representation Q( s) = (e
b5 

5
k 

n=l 
(1 ÷ ?1.s), ?~ > o~ j> 3 ~~ 

1 00,

b > 0, k a non-negative integer and Q(O) = C.

Theorem 9. h(u) is a PF function on [0,001 if the reciprocal of

the Laplace transform of h is in

Proof. The proof of this theorem can be found in [4).

23 
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Note that

n n
Q(s)  = it (7~.÷s)/ii ?‘

~~1 1

=~~~~ (1÷l/ ~ . s)

is the reciprocal of the Lap lace transform of the convolution of n

exponential densities with rates
NtLet G(t,~) = 1 - E[~ I.

Theorem 10. Let F have a density f.G (t,~ ) has a PF density

q(t,~ ), for ~€ [O,l~ if the Laplace transform of f has a reciprocal
n n n

of the form ii (7~.÷s)/fl ?~. and ( j~ (7~.÷s) - it ?~.) ha s all real
1 1 i= 1 i= 1

roots.

Proof.

q(t,~ ) = ~ ~n f(n)(~ ) -~~~

n=1

Let

c a ~ (-s ,~~) = 

Co 

e~~~
t 

q(t~~) dt

fa( s )  = 

Co 

e St 
f ( t)  dt .

Then,

~~(s,~ ) =
~~~~~l f ( s)~

214-



We want to show that q(t,~ ) is a PF density, and as it is clearly

a density, it suffices by Theorem 9 to show that q (s ,~~) is in

for all 
~~~ [0,1),

— l 1 — Iq~~ (s ,~~) = -1—~- ( q ~~ ( s )  —
~~

)

= (ll( ~~÷s) - 
~ i~ 1 ~~~ 

~i~ l ~~~

Now, ~~~~~~~ is in if Ø~(s) = n (?~ ÷s) - ~ II has all

— real, non-positive roots . For ~ € [0,1], ø~(s) >0 for s > 0.

So Ø~(s) has no positive roots . An inspection of the polynomial

will show that has all real roots for ~ € [0,1) if and only if

has all real roots .

Corollary . Let f be the convolution of two exponent~a1 densities.

Then q(t,~ ) is PF for ~ El [0,1).

Proof.  ~~~ ( s ,~~) = 
~~~ ~~~~~~ 

(~~ ÷s) - 
~ ~~~~ ~~~~~~~~~~~~

We need to sec if Ø1(s) = 
~~~~~~~~~~~~~~~ 

(A 2÷s) - has all real

4 roo t s  01(s )  = s(s ÷ ÷ 
~2~’ 

so the conditions of Theorem 10 are

satisfied .

Note: The result in Theorem 10 only holds for 
~ E [0,1), but it can

easily be extended to the case of ~ = I by continuity or by noting

that q(t,~ ) a 0 for ~ = 1.

25 - :
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8. Stochastic Wear Processes

In [ 6 ) , Morey introduces a class of non-decreasing stochastic

processes, which he called stochastic wear processes (SWP). (Zr , t > 0)

is a SWP if P(Z
~ 
< x) is Ti’2 

in t and x, Z~ is increasing and

Z is non- negative .t

Morey shows that if is a SWP with stationary independent

increments then the random variable T defined as infft > O~Z > xJx t

is an IFR random variable . He further asserts that for any non-negative

random variable X, Tx 
is also IFR. The latter result is not true.

Simply take to be identically t , note that P(Z
~ 
< x) = 1

( t I X )

which is TP
2 

and therefore Z~ is a SWP wi th stationary, independent

increments. Als o, P(Tx K t) = P(Z
~ 
> x) = P(X < t), so T

~ 
IFR implies

that X is IFR, which is clearly not true in general .

From now on, we will be considering a non-decreasing stochastic

process Z~ with Z
0 = 0, F(t,x) = P(Z

~ 
K x) and f(t,x) the density

of F for each t (if it exists).

We will prove the analogues of Theorems 14 through 8 for processes

which can take values on all of iR+.

First, we need the following lemma which is similar to Lemmas 2

and 3.

00

Lemma 14. Suppose that F(t,x) is TP~, q >0 and 0(t) = F ( t , x) g( x) dx .

Then, for all t
1 
I

F( t2,x) 
~~X dx 

- - 
Ø( t9) 

F( t2,x) ~~ dx
tim — ~~~~~~~ tim

• ~~~~ - . Co • — 0 ( t ) —

~ 4 0 
~ 

F(t1,x) 
~~X dx I ~ t 1 

~ F ( t 1, x) ~~ dx
x 0  x 0

-

~~~~~~ 

.:~
- 

~~~~~~~~~ 
— 

~~~~~-
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Proof. The left-hand side of the inequality follows by Lemma 3.

Now, 0(t2) <0(t1) as F(t2,x) K F(t1,x). Als o

I F ( t ,x) ~~ dx = I I f ( t ,u) ~~ du dx
x=O x=O u=0

= f(t,u) ~~U ~~X-U du dx
u=0 x=u

00 00

= I I f(u,t) ~ U ~~ dy du
u=O y=0

= -l/ln ~ E[~~
t
]

So,

00

I F ( t 2, x) ~~ dx

u r n  x=O u r n  -l/ ln ~ E [~ 
2~ 

= 1

~ ~ F(t 1,x) 
~X dx ~ ~ 1 — I / In ~ E [~ ~lI

Let G(x) = P (X K x) ,  ~(x)  = 1 - G( x) . Let g(x) be the

density of G. Let ik( t) = P(T > t ) ,  H( t) = 1 - H( t). Let h( t)

be the density of H(t) (if it exists). Then,

i) ñ( t) = P(T> t) = F( t,x) g(x) dx.

ii) 11( t )  = P(T > t) = 7 f ( t ,x) ~(x) dx.
x=0

If Z is strictly increasing in t,

iii) h( t) = 

00 

f ( t ,x) g(x)  dx .
H x=0

~

~uri



- — -

Theorem 11. If F(t,x) is TP~, then  H t  is PF 2 ( H  i s  I 1 ~ ) b r

all g PF2 if and only if EH = - 1 i ~~,x) dx ( i n  :)  is
x O

log concave in t for all ~ E •o,iL

Proof.

11(t) - a l  F~ t ,x )  ~ X dx r F, t ,x) (~~ x) - -L
x O  x O

~~( t )  - a F t ,x F,
X 

dx changes sign at most twice and in the

order - ÷ -  as g x ~ i s PF
2 and F ’ t ,x is TP~ ~Th~-~~r em l~ . N~~w ,

apply Lemma -~~ and argue as in Theorem 5.

Let g’ x) =

Z
~Note that E[~ I is log curcave if and only if F- t ,x) ~~X 

dx
x -0

is log concave .

- - We state the next three theorems without proof . They each

depend either on Lemma 3 or Lemma Li- .

Theorem 12. Let f(t,x~, be right Continuous for each t and TI’
3
. Then,

11(t) is log concave (H is IFR) for all ö(t) PF2 if and only if
• zt

E[~ J is log concave for all 
~ E [0,11.

Theorem 13. Suppose that is strictly increasing. Let f(t,x)

be right continuous for each t and TP:. Then, h(t) is PF
2 for

ztall g(t) PF2, and decreasing, if and only if E[~ I is log

concave for all 
~ € [0,1].



: :- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~~~~~~~~~~~~~~~~~ :•:-::--~~ 

-i
~~
---- --- - —

Theorem l- .~ Let f(t,x) be right continuous and TI’2. Then 11(t)

is I FRA t~~r all G(t) IFRA if and on ly if E[~~
t
]h/t is decreasing.

Examp le. Let N
~ 

be a non-homogenous Poisson Process with E(N
~
) = A( t) .

Cons~ der the compound renewal process whose z~r L iva l process is N
~ 

and

whos e ~un1p siz~.~ distribution is M with M o) • 0. Assume that M

has ~ density m Let T be the size c t  the nih jump. Let

Nt
~ 

Tk, it N~~> l
k= 1

H

0, if N
~~
= 0

Then

P~ Z K x) e~~~~t) 
~
. M~~~ ( x )

Let F t ,x~ = P
~
Z
~ 
< x). Let f(t,x) be the density of F on (0,001.

We have

k
( I  ti , x )  = 

n= l. 
e 1

~
’t) n ( t )  

m~’~~( x )

S- pp -
~~

- ni- , ~~ is PF
3
. Then m~~~ ( x) is TP

3
. Since e

_
~~~t) n( t) k 

-
•

is TP , we know by Theorem 3 that f(t,x) is TP
3 

on t > 0, x > 0.

Extend t~ ~,x) to t > 0, x > 0 so that it is still TP3. Now,

Af t \ f l  Co
E~~ j = e ~“ ~ where m~ I m (x) ~ X dxs x=O

z
So E~~ 

t j is log concave if A (t) is convex~
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Therefore, by Theorem i~- , if A is convex and m PF ., the

hitting time distribution of Z~ t~ any random barrier with an IFR

distribution is IFR.

•). Markov Processes

The questions we have been asking abou t  h i t t in g  t ime d i s t ri -

buti ons have very simp le answers if the process is M ark ov ian  and

spatially homogeneous . All of the below is taken directl y from [~~~].

H e n c e f o r t h , Z~ is a Markov Process, which is spatially homogeneous .

We let Ø~
(s,x) be the density of P(Z~ K x~Z~ =

Theorem 15. If O~
(s,x) is TP2 in s and x for each t and if

f (x) is PF2, then c(t) = I 00(t ,x) f(x) dx is PF,).
0

Proof.

c(t+s) = 

Co 

Ø
0
(t ~ - s, X)  f (x) dx

= r Ø0(t ,~) ~~~ 
x-~ ) f(x) dx

= I f l
0(t ,~ ) I ø~

(s,u) f (u÷~) du d~ .
0 0

As f is PF2, f (u ÷ ~ ) is RR 2 ( see [ 1 4 ] ) .  By a slig ht extension of

Theorem 3 (see [ ~ I ) ,  I øt(5,u) f(u÷~) du is RR 2, so as O0(t ,~)0
is TP2, by Theorem 3, c(t÷s) is RR2. But c(t+s) RR2 imp lies that

50 
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c(t) is PF2. Using Theorem 15, we can get the same results as in

Section 8 for temporally homogeneous Markov Processes with fever

and weaker assumptions. Note that for appropriate choices of f, c

• can be interpreted as the hitting time distribution or density of the

Markov process to a random barrier .

I

IL
31 
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In this paper, we considers a single device shock model. The device
experiens~ess~ocks from thç_~ nvironment, ~ ach of which can render ~he device
inoperable. We find sets of ~onditi~~s~en~the shock process and ~W-the
ability of the device to survlve shocks A so that the time to failure distri-
bution of the device falls into one of the common reliability theory claasi-
fications. We extend these resulta~to the case where the shock process can
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